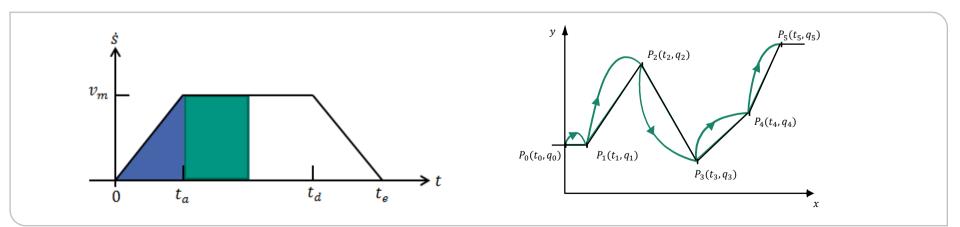


https://www.humanoids.kit.edu

Robotics I: Introduction to Robotics Chapter 6 – Trajectory Generation

Tamim Asfour



Fundamentals of trajectory generation

Programming of key points

Interpolation types

Approximated trajectory generation

Fundamentals of Trajectory Generation: Trajectory

The movements of a robot are regarded as

State changes

- Over time
- Relative to a fixed coordinate system (Workspace, Configuration space)

with restrictions due to

- Constraints
- Quality criteria
- Secondary and boundary conditions

Fundamentals of Trajectory Generation: Problem

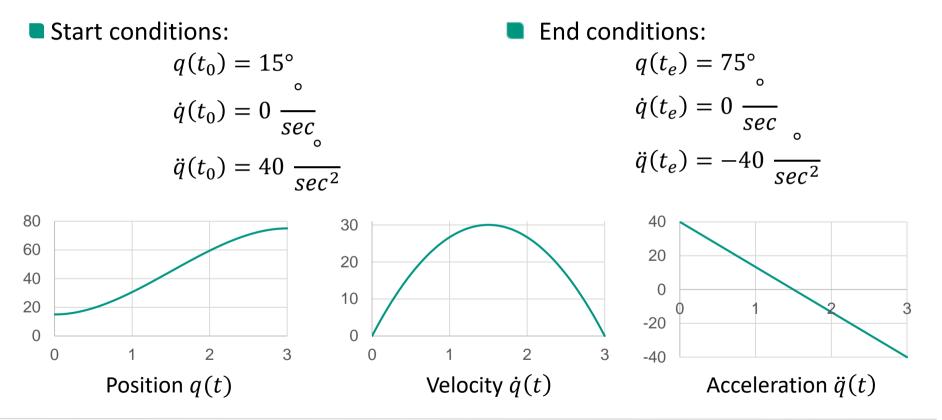
Given

- *S*_{start}:
 State at the start time
- *S*_{Destination}:
 State at the destination time

Desired

S_i:
 Intermediate states (support points), so that the trajectory is continuous.

Trajectory Generation: Example for a Single Joint



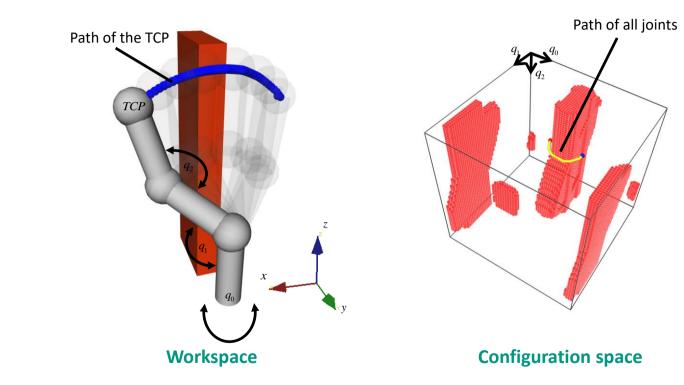
Trajectory Generation: Example for a Single Joint

Start conditions:End conditions: $q(t_0) = 15^{\circ}$ $q(t_e) = 75^{\circ}$ $\dot{q}(t_0) = 0 \frac{\circ}{sec}$ $\dot{q}(t_e) = 0 \frac{\circ}{sec}$ $\ddot{q}(t_0) = 40 \frac{\circ}{sec^2}$ $\ddot{q}(t_e) = -40 \frac{\circ}{sec^2}$

We can determine a third-degree polynomial that fulfills the conditions:

$$q(t) = -\frac{40}{9}t^3 + 20t^2 + 15 \qquad \dot{q}(t) = -\frac{40}{3}t^2 + 40t \qquad \ddot{q}(t) = -\frac{80}{3}t + 40$$

Trajectory Generation: Representation of the States (1)



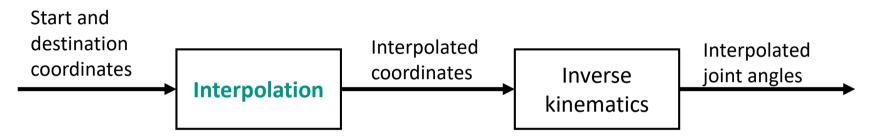
Trajectory Generation: Representation of the States (2)

States can be represented in

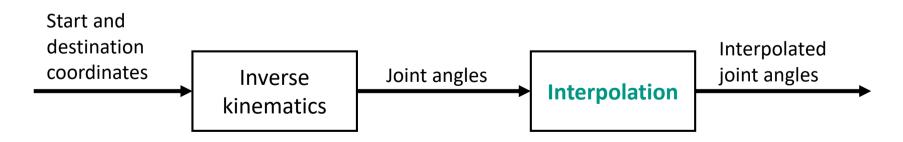
- Configuration space: \mathbb{R}^n
- Workspace: \mathbb{R}^3 , SE(3)
- Trajectory generation in the configuration space is closer to the control of the robot components (joints, sensors)
- Trajectory generation in the workspace is closer to the task to be solved
 For control in the workspace, the inverse kinematics must be solved

Trajectory Generation: Interpolation

Interpolation of world coordinates



Interpolation of joint angles



Trajectory Generation in the Configuration Space

- Trajectory generation as a function of the joint angle states
 - The course of the path, which is specified point by point in joint space, does not have to be defined in the workspace.
- Traversing trajectories that are specified point by point:
 - Asynchronous: Control of the axes independently of each other
 - Applications: Spot welding, handling tasks
 - Synchronous: Axis-interpolated control
 - Movement of all axes starts and ends at the same time
 - Leading axis
 - Applications: Path welding, spray painting, assembly tasks

Trajectory Generation in the Workspace

- The trajectory is specified as a function of the robot states
 - Example: Description vector of the end effector
 - Position, Velocity, Acceleration
- Continuous Path (CP):

End effector follows a **well-defined path** in terms of its position and orientation

Path types

- Linear paths
- Polynomial paths
- Splines

Trajectory Generation: Pros and Cons of the Representations

	Workspace	Configuration space
+ +	Path easier to formulate Interpolation is easier	 + Control of the joints is easier + Trajectory is unambiguous and respects the limits of the joint angles
_	Inverse kinematics must be solved for each point of the trajectory The planned trajectory cannot always be executed	 Interpolation for multiple joints Formulation of the trajectory is more complicated

Fundamentals of trajectory generation

Programming of key points

Interpolation types

Approximated trajectory generation

Movement of the end effector in 6 degrees of freedom

- Saving and deleting waypoints
- Setting velocities
- Entering commands to operate the gripper
- Starting / stopping entire programs

Direct Programming: Teach-In (1)

Manual steering to prominent points along the path

- Teach Box
- Teach Panel
- Spacemouse
- Teach Ball

Functionality of a Teach Box:

Individual movement of the joints

Direct Programming: Teach-In (2)

Procedure:

- Move the robot to relevant key points on the path
- Record the joint positions
- Add parameters such as velocities and accelerations to the stored values

Applications:

- Manufacturing industry
 - Spot welding
 - Riveting
- Handling tasks
 - Taking parcels from a conveyor belt

Direct Programming: Playback (1)

Robot in zero-force control mode

- Robot can be moved by the operator
- Movement along the desired path
- Recording of the joint values (2 options):
 - Automatically (predefined sampling frequency)
 - Manually (by pressing a button)

Applications:

- Motion sequences that are difficult to describe mathematically
- Integration of experience in craftsmanship
- Typical application areas:
 - Spray painting
 - Gluing

Direct Programming: Playback (2)

Direct Programming: Playback (3)

- Advantages
 - **Fast** for complex paths
 - Intuitive
- Disadvantages
 - Heavy robots are often difficult to move
 - Little space in narrow production cells poses a safety risk for the operator
 - Limited correction options
 - Optimization and control using interpolation methods is difficult (suboptimal paths)

Outline

Fundamentals of trajectory generation

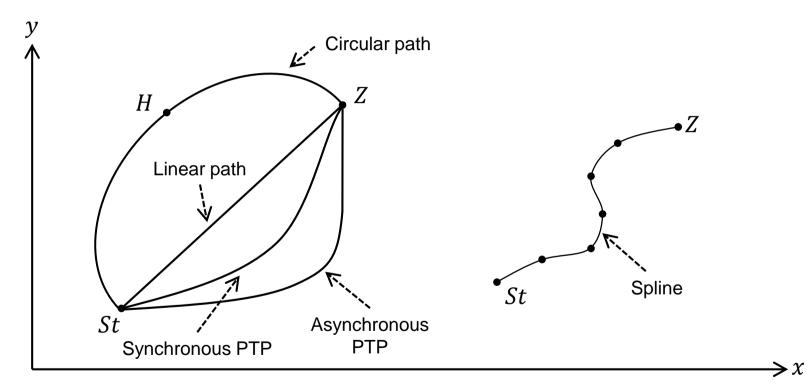
Programming of key points

Interpolation types

- Point-to-point (PTP)
- Linear and circular interpolation
- Spline interpolation

Approximated trajectory generation

Interpolation Types: Overview



Point-to-Point Control (PTP) (1)

Robot performs a point-to-point movement
 PTP: Point-to-Point

Advantages:

Calculating the joint angle trajectory is simple

No problems with singularities

Sequence of joint angle vectors

$$\boldsymbol{q}(t_j) = \left(q_1(t_j), q_2(t_j), \dots, q_n(t_j)\right)^T$$

with $q_i(t_j)$: Angle of joint i at time t_j with j = 0, ..., k

Point-to-Point Control (PTP) (2)

Boundary conditions

Start and destination states are known

Example: Velocities at the beginning and the end are zero

The joint positions, the joint velocities and the joint accelerations are limited (e.g. fast acceleration, slow deceleration)

 $\boldsymbol{q}(t_0) = \boldsymbol{q}_{Start}$ $q(t_e) = q_{Destination}$ $\dot{q}(t_0) = 0$ $\dot{\boldsymbol{q}}(t_{\rho})=0$ $\boldsymbol{q}_{min} < \boldsymbol{q}(t_i) < \boldsymbol{q}_{max}$ $|\dot{\boldsymbol{q}}(t_i)| < \dot{\boldsymbol{q}}_{max}$ $|\ddot{\boldsymbol{q}}(t_i)| < \ddot{\boldsymbol{q}}_{max}$

Maximum velocity v_m Maximum acceleration a_m

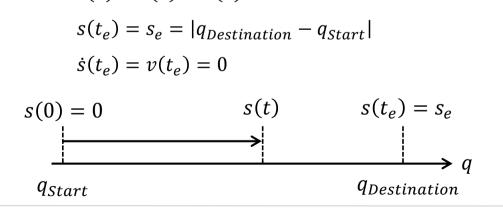
 $s(0) = \dot{s}(0) = v(0) = 0$

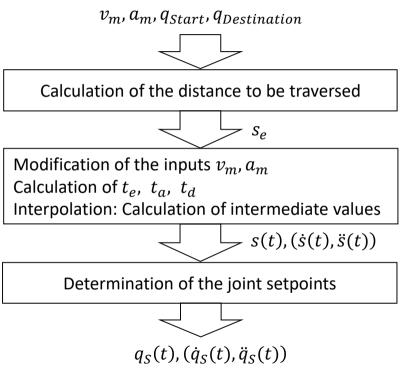
Control sequence

Traversing time t_{ρ}

• Acceleration time t_a

Start of braking time t_d



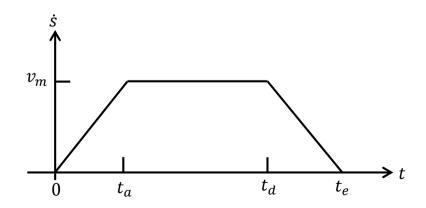


Interpolation for PTP with a Ramp Profile (1)

Advantage: Simple way to compute the path parameters s(t)

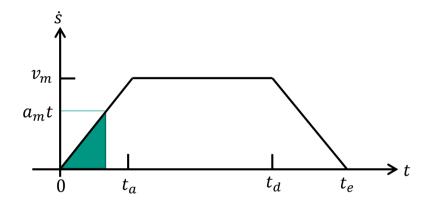
Disadvantage:

The acceleration is **discontinuous** (unlimited jerk), which can excite natural vibrations in mechanical parts.



Interpolation for PTP with a Ramp Profile (2)

Phase I: Acceleration



$$0 \le t \le t_a$$

 $\ddot{s}(t) = a_m$

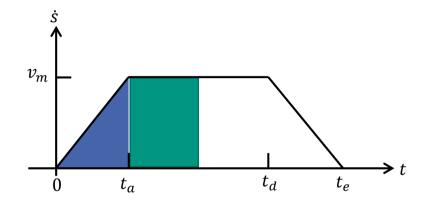
 $= a_m t$

$$\dot{s}(t) = a_m t + \dot{s}(0) \qquad \text{with } \dot{s}(0) = 0$$

$$s(t) = \frac{1}{2}a_m t^2 + s(0) \quad \text{with } s(0) = 0$$
$$= \frac{1}{2}a_m t^2$$

Interpolation for PTP with a Ramp Profile (3)

Phase II: Constant velocity



We know from Phase I:

$$\dot{s}(t_a) = a_m t_a = v_m \rightarrow t_a = \frac{v_m}{a_m}$$
$$s(t_a) = \frac{1}{2} a_m t_a^2$$

$$\ddot{s}(t) = 0$$

 $t_a \leq t \leq t_d$

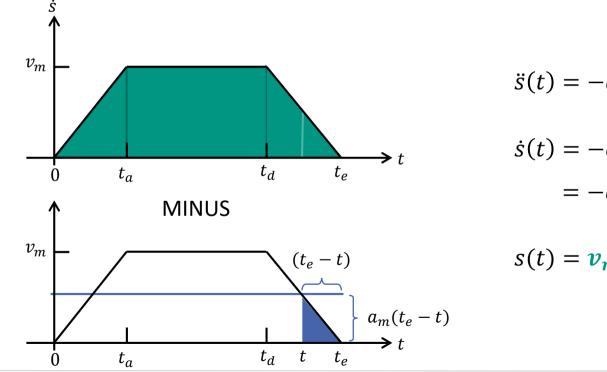
 $\dot{s}(t) = \dot{s}(t_a) = v_m$

$$s(t) = \mathbf{v}_m(t - t_a) + s(t_a)$$
$$= v_m \left(t - \frac{v_m}{a_m} \right) + \frac{1}{2} a_m t_a^2$$
$$= v_m t - \frac{1}{2} \frac{v_m^2}{a_m}$$

H2T

Phase III: Braking process

Interpolation for PTP with a Ramp Profile (4)



$$t_d \le t \le t_e$$
 with $t_d = t_e - t_a$

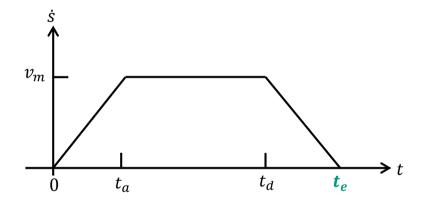
$$\ddot{s}(t) = -a_m$$

$$\dot{s}(t) = -a_m(t - t_d) + \dot{s}(t_d)$$
$$= -a_m(t - t_d) + v_m$$

$$s(t) = \boldsymbol{v}_m(\boldsymbol{t}_e - \boldsymbol{t}_a) - \frac{a_m}{2}(\boldsymbol{t}_e - \boldsymbol{t})^2$$

Interpolation for PTP with a Ramp Profile (5)

Calculation of the traversing time



We know from Phase III:

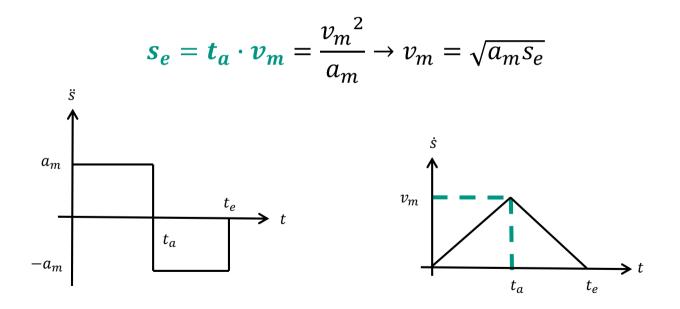
$$s(t_e) = s_e = v_m(t_e - t_a)$$

Solve for
$$t_e$$
, $t_a = \frac{v_m}{a_m}$

$$t_e = \frac{s_e}{v_m} + t_a = \frac{s_e}{v_m} + \frac{v_m}{a_m}$$

Time-optimal Path

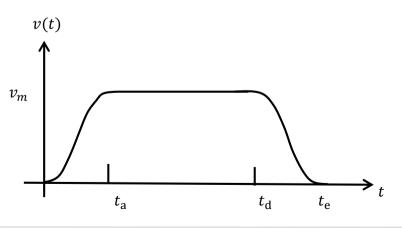
If v_m is too large in relation to the acceleration and path length: Determination of a time-optimal path according to



Interpolation for PTP with a Sinoid Profile (1)

Smoother movement by using a sinusoidal time function

- Advantage:
 - Less strain on the robot
- Disadvantage:
 - Longer acceleration and braking phase compared to the ramp profile
- Determination of the curve parameters for the three phases:
 - Acceleration
 - Constant velocity
 - Braking process



Interpolation for PTP with a Sinoid Profile (2)

Phase of acceleration

$$\dot{s}(t) = a_m \left(\frac{1}{2}t - \frac{t_a}{4\pi}\sin\left(\frac{2\pi}{t_a}t\right)\right)$$

 $\ddot{s}(t) = a_m \sin^2\left(\frac{\pi}{-t}\right) \quad 0 \le t \le t_a$

$$s(t) = a_m \left(\frac{1}{4}t^2 + \frac{t_a^2}{8\pi^2} \left(\cos\left(\frac{2\pi}{t_a}t\right) - 1\right)\right)$$

From $\dot{s}(t_a) = a_m \frac{1}{2}t_a = v_m$ follows $t_a = \frac{2v_m}{a_m}$

Phase of constant velocity

$$\begin{split} \ddot{s}(t) &= 0 \quad t_a \leq t \leq t_d \\ \dot{s}(t) &= v_m \\ s(t) &= v_m (t - \frac{1}{2}t_a) \end{split}$$

Interpolation for PTP with a Sinoid Profile (3)

. . \

Phase of the braking process

$$\dot{s}(t) = v_m - \int_{t-t_d}^t a(\tau - t_d) d\tau = v_m - a_m (\frac{1}{2}(t - t_d) - \frac{t_a}{4\pi} \sin\left(\frac{2\pi}{t_a}(t - t_d))\right) \quad t_d \le t \le t_e$$

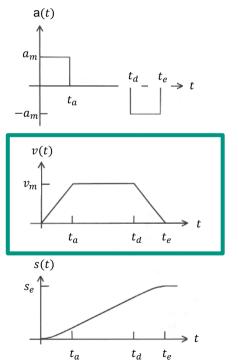
$$s(t) = s(t_d) + \int_{t-t_d}^{t} \dot{s} (\tau - t_d) d\tau = \frac{a_m}{2} \left(t_e(t + t_a) - \frac{t^2 + t_e^2 + 2t_a^2}{2} + \frac{t_a^2}{4\pi} \left(1 - \cos\left(\frac{2\pi}{t_a}(t - t_d)\right) \right) \right)$$

Computation of the traversing time

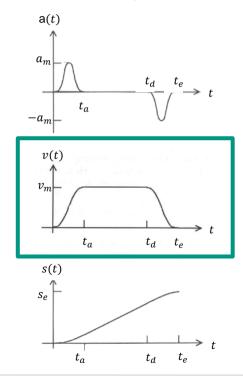
$$t_e = \frac{s_e}{v_m} + t_a = \frac{s_e}{v_m} + \frac{2v_m}{a_m}$$

Interpolation Types: Ramp vs. Sinoid Profile

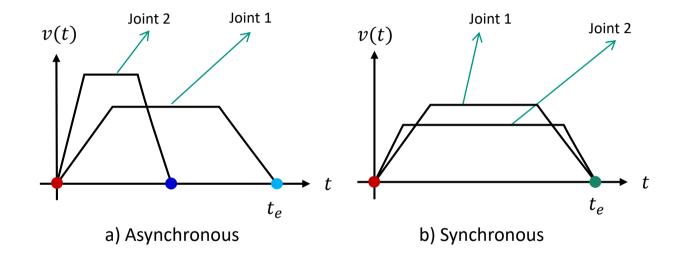
Ramp profile



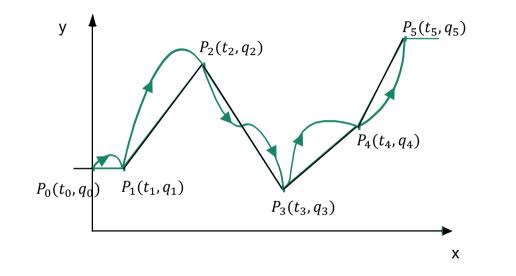
Sinoid profile



Asynchronous and Synchronous PTP Paths

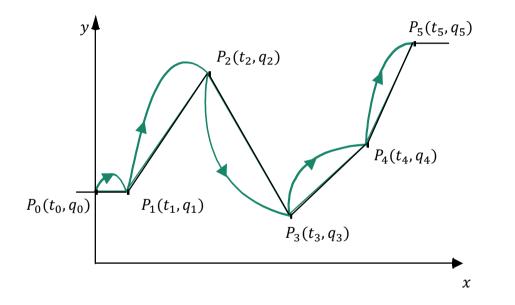


Asynchronous PTP Paths



Each joint is immediately actuated with the maximum acceleration.
 Each joint movement ends independently of the others.

Synchronous PTP Paths



All joints start and end their movements at the same time (synchronous).

Synchronous PTP Paths: Procedure (1)

Determine the PTP parameters for each joint i (analogous to asynchronous PTP)

- v_{m,i}
- a_{m,i}
- $t_{e,i}$ (traversing time)
- Determine the maximum traversing time
 - $\bullet t_e = t_{e,max} = max(t_{e,i})$
 - Axis with the maximum traversing time is the leading axis
- Set the maximum traversing time as the traversing time for all joints.
 - $\bullet t_{e,i} = t_e$

Synchronous PTP Paths: Procedure (2)

- Determine the new maximum velocity for all joints
 - Conversion of the traversing time und calculation of the new maximum velocity

Ramp profile:

$$t_{e} = \frac{s_{e,i}}{v_{m,i}} + \frac{v_{m,i}}{a_{m,i}} \to v_{m,i}^{2} = v_{m,i}a_{m,i}t_{e} - s_{e,i}a_{m,i}$$

$$v_{m,i} = \frac{a_{m,i}t_e}{2} - \sqrt{\frac{a_{m,i}^2 t_e^2}{4} - s_{e,i}a_{m,i}}$$

Analogous calculation for a sinoid profile:

$$v_{m,i} = \frac{a_{m,i}t_e}{4} - \sqrt{\frac{a_{m,i}^2 t_e^2 - 8s_{e,i}a_{m,i}}{16}}$$

Fully Synchronous PTP Paths

Additional consideration of the acceleration time and braking time

Better approximation of the start and end points in the workspace

Determination of the leading axis with t_e and $t_a \rightarrow t_d = t_e - t_a$

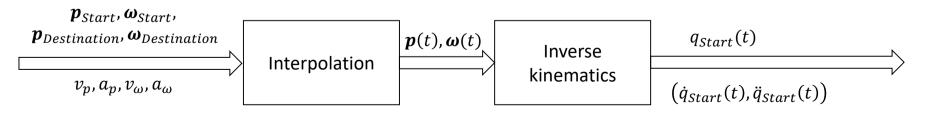
Determination of the maximum velocity and acceleration of the other axes:

$$v_{m,i} = \frac{s_{e,i}}{t_d} \qquad \qquad a_{m,i} = \frac{v_{m,i}}{t_a}$$

Disadvantage: Acceleration of each axis is predetermined

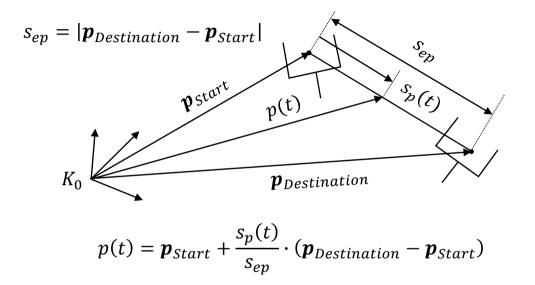
Control in the Workspace

- Continuous Path (CP)
 - End effector follows a **defined** path with regard to its position and orientation
- Pose of the end effector in the workspace
 - **p** = $(x, y, z)^T \in \mathbb{R}^3$: Position
 - $\boldsymbol{\omega} = (\alpha, \beta, \gamma)^T \in \mathbb{R}^3$: **Orientation** (e.g. as Euler angles)
- Maximum velocities and accelerations in the work space:
 - $v_p \in \mathbb{R}$: Linear velocity
 - $a_p \in \mathbb{R}$: Linear acceleration
 - $v_{\omega} \in \mathbb{R}$: Angular velocity
 - $a_{\omega} \in \mathbb{R}$: Angular acceleration



Karlsruher Institut für Technologie

Linear Interpolation (1)



Calculation of $s_p(t)$ with a ramp profile or a sinoid profile:

$$s_p(0) = \dot{s}_p(0) = v_p(0) = 0, \qquad \dot{s}_p(t_e) = v_p(t_e) = 0$$
$$v_m = v_p, a_m = a_p, t_e = t_{ep}, t_a = t_{ap}, t_d = t_{dp}, s_e = s_{ep}, s = s_p$$

Linear Interpolation (2)

• Orientation in Euler angles:
$$\boldsymbol{\omega} = (\alpha, \beta, \gamma)^T$$

 $s_{e\omega} = |\boldsymbol{\omega}_{Destination} - \boldsymbol{\omega}_{Start}|$
 $= \sqrt{(\alpha_{Destination} - \alpha_{Start})^2 + (\beta_{Destination} - \beta_{Start})^2 + (\gamma_{Destination} - \gamma_{Start})^2}$

Calculation of $s_{\omega}(t)$ with a ramp profile or a sinoid profile:

 $\begin{array}{ll} v_m = v_\omega, & a_m = a_\omega, & t_e = t_{e\omega}, & t_a = t_{a\omega}, & t_d = t_{d\omega}, & s_e = s_{e\omega}, \\ s = s_\omega \end{array}$

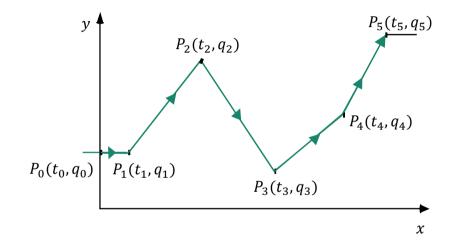
Synchronization of the traversing times t_{ep} (position) and $t_{e\omega}$ (orientation)

$$t_e = \max(t_{ep}, t_{e\omega})$$

Analogous to adjusting the velocities for synchronous PTP:

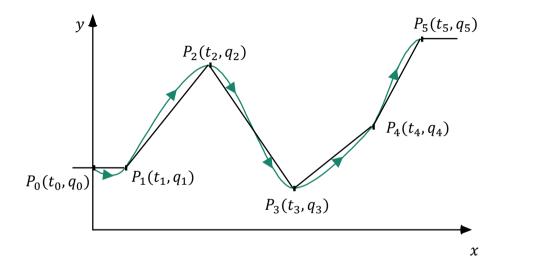
If
$$t_e = t_{ep}$$
: $v_\omega = \frac{a_\omega t_e}{2} - \sqrt{\frac{a_\omega^2 t_e^2}{4} - s_{e\omega} a_\omega}$
If $t_e = t_{e\omega}$: $v_p = \frac{a_p t_e}{2} - \sqrt{\frac{a_p^2 t_e^2}{4} - s_{ep} a_p}$

Linear Interpolation: Example



The robot controller interpolates the path between 2 consecutive partial trajectories.

Segment-wise Path Interpolation



The end conditions of the partial trajectory j - 1 (direction, velocity, acceleration) and the start conditions of the partial trajectory j are adjusted to each other

Partial trajectories are described separately (Example: Splines)

Interpolation with Cubic Splines (1)

Polynomial $f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$ $(a_0, a_1, a_2, a_3 \in \mathbb{R})$

Given:

- Starting point $f(0) = s_a$ End point $f(t_e) = s_e$ Starting velocity $\dot{f}(0) = v_a$ End velocity $\dot{f}(t_e) = v_e$
- Desired: $a_0, a_1, a_2, a_3 \in \mathbb{R}$

Goal: Determine parameters for the polynomial

Cubic Splines: Determination of the Parameters (1)

• $f(0) = s_a$

$$\bullet \dot{f}(0) = v_a$$

 $\bullet \dot{f}(t_e) = v_e$

Cubic Splines: Determination of the Parameters (2)

•
$$f(0) = s_a$$

 $f(t = 0) = a_0 + a_1t + a_2t^2 + a_3t^3 = a_0$
 $\Rightarrow a_0 = s_a$

$$\dot{f}(t=0) = a_1 + 2a_2t + 3a_3t^2 = a_1$$
$$\Rightarrow a_1 = v_a$$

$$\bullet \dot{f}(t_e) = v_e$$

 $\bullet \dot{f}(0) = v_a$

$$a_{1} + 2a_{2}t_{e} + 3a_{3}t_{e}^{2} = v_{e}$$

$$v_{a} + 2a_{2}t_{e} + 3a_{3}t_{e}^{2} = v_{e}$$

$$2a_{2}t_{e} = v_{e} - v_{a} - 3a_{3}t_{e}^{2}$$

$$a_{2} = \frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}a_{3}t_{e}$$

Cubic Splines: Determination of the Parameters (3)

- $a_0 = s_a$
- $a_1 = v_a$
- $\bullet a_2 = \frac{v_e v_a}{2t_e} \frac{3}{2}a_3t_e$
- $f(t_e) = s_e$

$$a_{0} + a_{1}t_{e} + a_{2}t_{e}^{2} + a_{3}t_{e}^{3} = s_{e}$$

$$s_{a} + v_{a}t_{e} + \left(\frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}a_{3}t_{e}\right)t_{e}^{2} + a_{3}t_{e}^{3} = s_{e}$$

$$2v_{a}t_{e} + (v_{e} - v_{a})t_{e} - 3a_{3}t_{e}^{3} + 2a_{3}t_{e}^{3} = 2(s_{e} - s_{a})$$

$$(v_{e} + v_{a})t_{e} - a_{3}t_{e}^{3} = 2(s_{e} - s_{a})$$

$$-a_{3}t_{e}^{3} = -(v_{e} + v_{a})t_{e}$$

$$\Rightarrow a_{3} = \frac{(v_{e} + v_{a})}{t_{e}^{2}} - \frac{2(s_{e} - s_{a})}{t_{e}^{3}}$$

Cubic Splines: Determination of the Parameters (4)

$$a_{2} = \frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}a_{3}t_{e}$$

$$a_{2} = \frac{v_{e} - v_{a}}{2t_{e}} - \frac{3}{2}\left(\frac{(v_{e} + v_{a})}{t_{e}^{2}} - \frac{2(s_{e} - s_{a})}{t_{e}^{3}}\right)t_{e}$$

$$a_{2} = \frac{1}{2t_{e}}(v_{e} - v_{a} - 3v_{e} - 3v_{a}) + \frac{3(s_{e} - s_{a})}{t_{e}^{2}}$$

$$\Rightarrow a_{2} = \frac{3(s_{e} - s_{a})}{t_{e}^{2}} - \frac{v_{e} + 2v_{a}}{t_{e}}$$

Cubic polynomial $f(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$

Cubic Splines: Determination of the Parameters (5)

 $f(0) = s_a$

- Desired properties:
 - Starting point
 - End point
 - Starting velocity
 - End velocity

$$f(t_e) = s_e$$

$$\dot{f}(0) = v_a$$

$$\dot{f}(t_e) = v_e$$

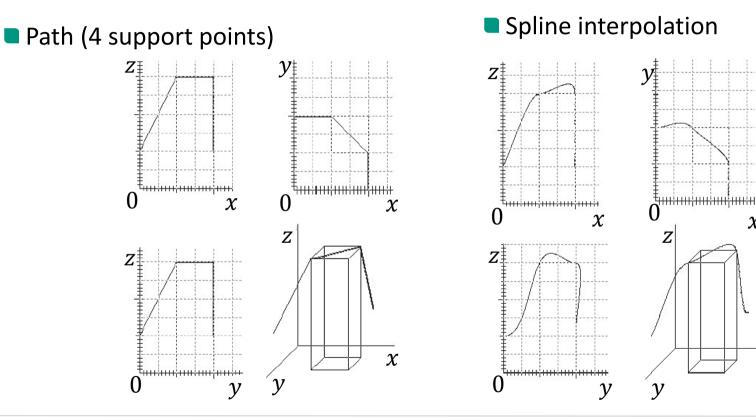
Solution:

$$f(t) = s_a + v_a t + \left(\frac{3(s_e - s_a)}{t_e^2} - \frac{v_e + 2v_a}{t_e}\right) t^2 + \left(\frac{(v_e + v_a)}{t_e^2} - \frac{2(s_e - s_a)}{t_e^3}\right) t^3$$

Spline Interpolation: Examples

X

X



Outline

- Fundamentals of trajectory generation
- Programming of key points
- Interpolation types
- Approximated trajectory generation
 - Bernstein polynomial

53 Robotics I: Introduction to Robotics | Chapter 06

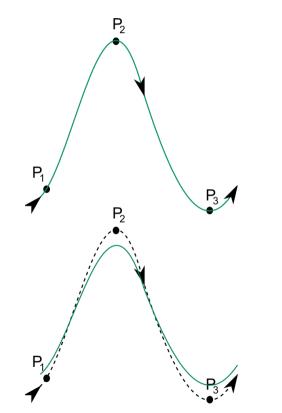
Approximated Trajectory Generation: Definition

Path interpolation:

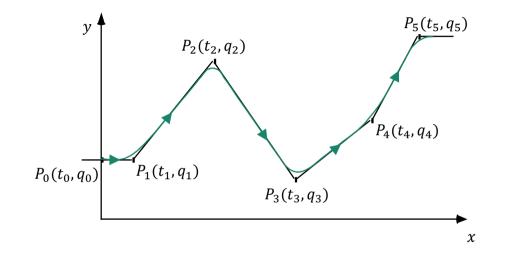
The executed path traverses all support points of the trajectory

Path approximation:

The support points influence the course of the path and are approximated



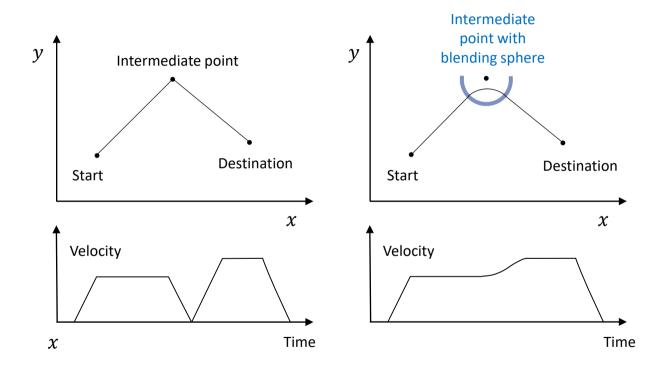
PTP and CP with Blending (1)



At time point $t_j - \varepsilon$, start to transfer the parameters (direction and velocity) of the partial trajectory j - 1 to the parameters of the partial trajectory j.

Usually the support point i is not reached.

PTP and CP with Blending (2)



PTP and CP with Blending (3)

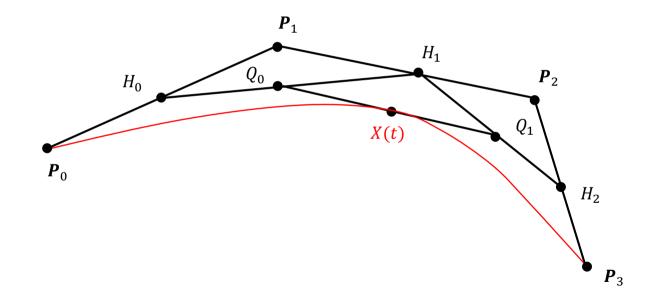
Velocity blending

- Start when the velocity falls below a specified minimum value
- Disadvantage: Dependent on the velocity profile

Positional blending

- Start when the end effector enters the blending sphere
- Outside of the blending sphere, the path is strictly adhered to.
- Advantage: Easy to control

Approximation with Bernstein Polynomials



Bézier Curves (1)

In contrast to cubic splines, Bézier curves do not run through all support points P_i, but are only influenced by them.

Basis function:

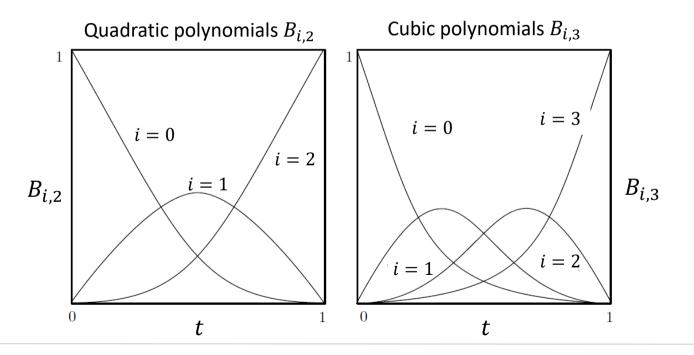
$$P(t) = \sum_{i=0}^{n} B_{i,n}(t) \mathbf{P}_{i} \quad 0 \le t \le 1$$

B $_{i,n}(t)$: *i*-th **Bernstein polynomial** of degree n

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Bernstein Polynomials: Examples

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$



Bézier Curves (2)

Calculation of arbitrary intermediate positions

Example: Bernstein polynomial for the cubic case (Degree n = 3)

$$B_{i,3}(t) = {3 \choose i} t^i (1-t)^{3-i}$$

$$P(t) = (1-t)^3 \mathbf{P}_0 + 3(1-t)^2 t \mathbf{P}_1 + 3(1-t)t^2 \mathbf{P}_2 + t^3 \mathbf{P}_3$$

Approaching support points from below

 P_1 P_2 P_3 P_3

60 Robotics I: Introduction to Robotics | Chapter 06

No arbitrary shape

De Casteljau's Algorithm (1)

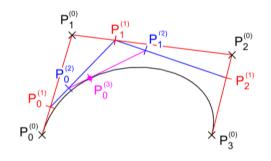
Approximation of the Bézier curve:

- Efficient calculation of an approximate representation of Bézier curves using a polygonal chain
- Idea: Algorithm is based on dividing a Bézier curve and representing it by two consecutive Bézier curves
- **Iterative calculation**: Can be efficiently calculated even for large values of *n*

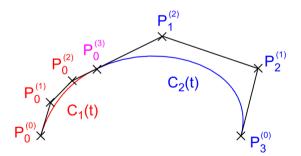
Given:
$$n$$
 support points P_0, \dots, P_{n-1} Start: $P_i^0 = P_i$ Iteration k: $P_i^{k+1} = (1-t_0)P_i^k + t_0P_{i+1}^k$

De Casteljau's Algorithm (2)

Example for P_0 with k = 3 and $t_0 = 0,25$:



Two Bézier curves C₁(t) and C₂(t)
 Approximation of the Bézier curve using a polygonal chain



The End!

